首先我们来了解一下LNMO的晶体结构。LNMO以两种多晶型态存在:一种是由Fd3m空间群组成的面心立方相,即无序LNMO(D-LNMO),其中,锰离子和镍离子随机的分布在16d位点处;另外一种是由P4332空间群组成的原始立方相,即有序LNMO(O-LNMO),其中,锰离子和镍离子有序的分布在4a和12d位点处。其中,D-LNMO有两种形式存在,即氧缺陷LiNi0.5Mn1.5O4-δ和镍缺陷LiNi0.5-xMn1.5-xO4。锂离子在LNMO中以三维形式迁移,即通过空八面体位点从一个四面体位点转移到附近位点,活化能垒受到过渡金属静电排斥影响巨大。理论研究表明,O-LNMO中锂离子迁移的活化能低至300meV,与通过第一性原理计算得到的锂离子扩散率值10-8-10-9 cm2/s相一致。
那么如何通过测试表征区分D-LNMO和O-LNMO有以下三种方法:
XRD分析:D-LNMO的晶格参数((8.188 )稍大于O-LNMO((8.178 ),这是因为D-LNMO中有更多的Mn3+存在。
Raman分析:580-620cm-1区域是八面体中MnO6的Mn-O伸展模式特征区域。595 cm-1和 612 cm-1两处峰代表的是F2g振动模式。其中,O-LNMO在此两处的峰强度高于D-LNMO(见图1),这是因为O-LNMO中锰和镍的排布非常有序。
充电电压平台不同:对于D-LNMO,在4V处出现了一个小的电压平台,这是由Mn3+/ Mn4+电对导致的(见图2)。这一情况并未出现在O-LNMO中。



图2. D-LNMO和O-LNMO的部分充电曲线,倍率C/200。
接下里,本文就D-LNMO和O-LNMO的传输性能(电导率、离子传导率和化学扩散)以及电极-电解液界面电荷转移反应进行系统解读,为将来该材料的应用与优化打下基础。
一、D-LNMO和O-LNMO的电导率、离子传导率和离子扩散性能测试[1]
(1)D-LNMO和O-LNMO的电导率测试采用Li|Ag|LNMO|Ag|Li Swagelok型电池体系。此体系为离子阻隔电池体系,忽略掉离子传导的影响以准确测量电导率。其中,Ag是离子阻隔层。

图3. Swagelok型电池体系示意图
O-LNMO的电导率随着锂离子的脱出开始增加,当x值达到0.3后,电导率值出现波动,不再增加(图4)。对于D-LNMO,x=0时,其电导率值非常高。一旦脱锂后,电导率呈断崖式下跌,并与O-LNMO的电导率值相接近。此后,D-LNMO和O-LNMO电导率表现出相类似的趋势。阿累尼乌斯定律计算结果表明:随着锂离子的脱出,O-LNMO的活化能从0.53 eV变化到 0.24eV (±0.03 eV),D-LNMO的活化能从0.41eV变化到0.22eV (±0.03 eV)。在测试温度范围内,D-LNMO和O-LNMO活化能非常相似(图5),说明二者具有相似的电子传导机理。
未脱锂时,即x=0时(Li1-xNi0.5Mn1.5O4),D-LNMO的电导率是O-LNMO的15倍,这是因为Mn3+/ Mn4+混合价态的存在导致了窄带中空穴的形成。随后,一旦锂离子脱出,D-LNMO中的Mn3+转变为Mn4+,因此其电导率就会降低至O-LNMO电导率的水平(O-LNMO中的锰都是单一价态,即Mn4+)。当0