当前位置: 首页 » 资讯 » 行业资讯 » 市场杂谈 » 正文

大阪大学太阳能电池方案,无pn结转换效率有望达到70~80%

放大字体  缩小字体 发布日期:2014-08-07  作者:鑫椤资讯
      在“PVJapan2014”上,日本大阪大学产业科学研究所的研究员江村修一等人提出了不使用pn结的新原理的太阳能电池方案。理想情况下,这种太阳能电池的转换效率有望达到70~80%。

      新原理的思路是,利用晶体内的极性,也就是自发极化引发的内部电场梯度来分离激子(成对的电子与空穴)。太阳能电池常用的材料Si没有极性,但不少化合物的晶体都具有强极性。当这些材料在内部电场梯度的作用下吸收光子生成激子后,电子与空穴将自发性地分离至不同方向。按照具体设想,太阳能电池元件的结构是在InN层与电极之间夹入300nm~350nm厚、带隙为0.92eV的InGaN层。

      对于一般的太阳能电池,分离激子、使电子与空穴分别转移到不同电极是由pn结来完成的。而江村表示,只利用内部电场梯度分离激子具有许多优点,其中最大的优点是能够减少电子与空穴的复合和热弛豫。

      举例来说,一般的Si类太阳能电池为了提高光吸收率,仅活性层经常就达到数十m甚至更厚。这使得大多数波长短、能量高的光子在远离pn结的地方就变成“热激子”,在抵达pn结分离成电子和空穴之前,就已经因复合和热弛豫而产生损失。

      过去的单结太阳能电池存在的问题是,波长短于带隙的光因热弛豫而损失,而波长较长的光会发生透射,无法有效利用。这种现象被称作“Shockley-Queisserlimit”,关系到单结太阳能电池的最大性能。

      而此次提出的新型太阳能电池的光活性层使用的InGaN的厚度为300nm~350nm。据江村介绍,InGaN不同于Si,属于直接迁移型,光吸收率高,“只需100nm左右的厚度就能吸收照射光线的1/2”,300nm则可吸收大部分的光线。相对于载流子的寿命,该层到电极的距离也比较短。因此“没有声子散射,也不发生热弛豫”。这就消除了决定“Shockley-Queisserlimit”的两大损失原因中的一个。
   
      红外线等长波长电磁波的透射损失依然存在。但是,通过控制InGaN中In的成分,使带隙缩小到0.92eV后,无法利用的红外线的能量比可以降低到阳光整体的10%。

      江村表示,即使考虑到这10%和光反射等造成的损失,也可以使整体损失降低到20~30%。换言之,在理想情况下,能够实现转换效率为70~80%的太阳能电池。

      但截至目前,这种太阳能电池还停留在理论阶段。江村表示,“今后就要实际制作元件并进行评估”。
 
关于我们:中国化学与物理电源行业协会(China Industrial Association of Power Sources,缩写:CIAPS) 是由电池行业企(事)业单位自愿组成的全国性、行业性、非营利性的社会组织。协会成立于1989年12月,现有550多家会员单位,下设碱性蓄电池与新型化学电源分会、酸性蓄电池分会、锂电池分会、太阳能光伏分会、干电池工作委员会、电源配件分会、移动电源分会、储能应用分会、动力电池应用分会和电池隔膜分会等十个分支机构。
本会专业范围包括:铅酸蓄电池、镉镍蓄电池、氢镍蓄电池、锌锰碱锰电池、锂一次电池、锂离子电池、太阳电池、燃料电池、锌银电池、热电池、超级电容器、温差发电器及其他各种新型电池、电池系统解决方案,以及各类电池用原材料、零配件、生产设备、测试仪器和电池管理系统等。

[ 资讯搜索 ]  [ 加入收藏 ]  [ 告诉好友 ]  [ 打印本文 ]  [ 关闭窗口 ]

 

 
资讯浏览
 
网站首页