鑫椤资讯
 
当前位置: 首页 » 资讯 » 行业资讯 » 电解液 » 正文

人工智能高效助力锂电池电解质开发 潜力巨大

放大字体  缩小字体 发布日期:2018-03-28  来源:科技日报  作者:鑫椤资讯

富士通株式会社和日本理化学研究所最近公布,他们的联合研究小组在材料设计中应用第一原理计算与人工智能技术,对全固态锂离子电池的固体电解质组成做了预测、合成与评价试验,并进行了实际验证。结果证明,即使在较少数据下,通过与人工智能方法结合,仍可高效地找出最佳材料组成,大幅提高材料开发速度。

迄今为止,材料的开发不得不依赖研究人员长期积累的经验和敏锐的直觉,需要积累许多失败的教训才能成功。而第一原理计算是如果指定了材料的组成,基于量子力学可以预测的特征,在实验之前即可预测新的高功能材料的最佳组成,从而大幅减少实验失败次数。但是第一原理计算的负荷非常巨大,材料各种组成需要多重计算,将会花费非常长的时间。

研究小组希望通过材料模拟、实验和人工智能密切结合,解决材料开发中的问题,使材料开发时间大幅缩短,以期更容易地发现意想不到的组成和结晶结构,造出新的高功能材料。

此次研究小组使用人工智能方法之一的贝叶斯推断法组合,控制第一原理计算的运算次数,对全固态锂离子电池固体电解质的三种含有锂的氧酸盐合成化合物进行了预测。结果证实,该方法能在可实现的时间内,预测高锂离子传导率的最佳组合。同时在预测的组成附近也发现了其他组成的高锂离子传导率。

锂离子传导率是固态电解质材料重要的特征之一,是主导锂电池充放电速度的因子。此次研究成果验证了利用材料模拟和人工智能方法可高效开发不漏液、不起火的锂离子电池,今后有望在电池、半导体以及磁性体等材料领域发挥巨大潜力。

 
关于我们:中国化学与物理电源行业协会(China Industrial Association of Power Sources,缩写CIAPS) 是由电池行业企(事)业单位自愿组成的行业性、非营利性的社会组织,主管部门为工业和信息化部。协会成立于1989年12月,现有460多家会员单位,下设碱性蓄电池与新型化学电源分会、酸性蓄电池分会、锂电池分会、太阳能光伏分会、干电池工作委员会、电源配件分会、移动电源分会、储能应用分会、电池设备分会、动力电池应用分会等十个分支机构。
本会服务范围包括:铅酸蓄电池、镉镍蓄电池、氢镍蓄电池、锌锰碱锰电池、锂一次电池、锂离子和锂聚合物电池、太阳电池、燃料电池、锌银电池、热电池、超级电容器、温差发电器及其他各种新型电池、电池系统解决方案,以及各类电池用原材料、零配件、生产设备、测试仪器和电池管理系统等。

[ 资讯搜索 ]  [ 加入收藏 ]  [ 告诉好友 ]  [ 打印本文 ]  [ 关闭窗口 ]

 

 
资讯浏览
市场报价
网上展厅
 
网站首页 | 网站招聘 | 协会介绍 | 授权运营 | 网站服务 | 联系方式 | 使用协议 | 版权隐私 | 协会章程 | 理事会名单 | 优秀会员 | 排名推广 | 广告服务 | 网站留言 | RSS订阅 | 沪ICP备11004255号-6 站点地图
按字母索引:  a   b   c   d   e   f   g   h   i   j   k   l   m   n   o   p   q   r   s   t   u   v   w   x   y   z      服务热线:13661941470