当前位置: 首页 » 资讯 » 行业资讯 » 市场杂谈 » 正文

新型化学电池:铁电池

放大字体  缩小字体 发布日期:2015-05-05  作者:鑫椤资讯
核心提示:目前,世界各国都在为研发汽车新能源,进一步降低汽车尾气对环境带来的污染,采取着不同措施,一些新能源不断被利用到现代的汽车中,比如天然气,氢能源,电动能源,燃料电池等,而燃料电池就是各个汽车厂家和科研机构着力研究的一个方向。在目前的燃料电池技术中,有一种新的电池技术-----铁电池技术。
 
  目前,世界各国都在为研发汽车新能源,进一步降低汽车尾气对环境带来的污染,采取着不同措施,一些新能源不断被利用到现代的汽车中,比如天然气,氢能源,电动能源,燃料电池等,而燃料电池就是各个汽车厂家和科研机构着力研究的一个方向。在目前的燃料电池技术中,有一种新的电池技术-----铁电池技术。 

  目前国内外研讨的铁电池有高铁电池和锂铁池两种。高铁电池是一种以合成稳定的高铁酸盐(K2FeO4、BaFeO4等)作为高铁电池的
正极材料制作的,具有能量密度大、体积小、重量轻、寿命长、无污染等特点的新型化学电池;另一种是锂铁电池,主要是磷酸铁电池,开路电压在1.78V-1.83V,工作电压在1.2V-1.5V,比其他一次电池高0.2-0.4V,而且放电平稳、无污染、安全、性能优良。 

  高铁电池作为电池正极的一种新型化学电池。其具有能量密度大、放电稳定、体积小、重量轻、寿命长、不消耗
电解液、无污染等优点,特别适合需要大功率、大电流的场合,如数码相机、摄影机等电子产品,与锂电池相比,高铁电池性价比更高。 

  高铁电池的优点: 

  目前市场上的民用电池比功率只有60-135w/kg,而高铁电池可以达到1000w/kg以上,放电电流是普通电池的3-10倍。高铁酸盐物质在电池反应中可以得到3个电子,所以有相对较高的容量。高铁酸锂的理论容量高达601Ah/kg。高铁酸钡的理论容量也有313Ah/kg。而MnO2的容量为308Ah/kg。高铁电池放电稳定。如Zn-K2FeO4,70%以上的放电时间在1.2-1.5V。制造高铁电池的原料丰富,铁是地壳中最为丰富的元素之一,铁在地壳中的含量为4.75%(与之相比,锌锰电池的主要原料锰的含量为0.088%)。同时每mol+6价铁能产生3mol电子,而每mol+4价锰仅能产生1mol电子,铁的用量仅是锰的1/3,大大节约了资源,降低了原料的成本。市面上MnO2大约9000元/每吨,Fe(NO3)3大约7500元/每吨。且高铁电池绿色无污染。高铁酸盐放电后的产物为FeO-OH或Fe2O3-H2O,无毒无污染,对环境友好。不需要回收。 

  高铁电池的正极: 

  高铁电池的
正极材料是高铁酸盐,比如:K2FeO4、BaFeO4等,在电池放电反应中,+6价铁得到3个电子,转化为+3价铁(一般为铁的氧化物),所以有相对较高的容量。 

  以高铁酸盐为
正极材料取代商业锌锰电池中的MnO2即可组成高铁一次电池。其电池反应为: 

  K2FeO4+3/2Zn—→1/2Fe2O3+1/2ZnO+K2ZnO2 

  高铁电池的负极: 

  在高铁电池中,可作为电池负极的材料也很多,包括锌、铝、铁、镉和镁等。 

  1、锌(Zn) 

  根据锌的金属特性,其电极电势较低,因而比能量和比功率都比较高。而且锌具有较好的放电性能,价格便宜,来源丰富。在化学电源中得到广泛的应用。目前应用形式主要有Zn-MnO2电池和Zn-空气电池。 

  在碱性溶液中,锌电极反应除了形成锌酸盐外,最终产物主要为固相的氧化锌: 

  Zn+2OH—→Zn(OH)2+2e; 

  Zn(OH)2+2OH—→Zn(OH)42-; 

  Zn(OH)42—→ZnO+H2O+2OH-; 

  总反应为:Zn+2OH—→ZnO+H2O+2e 

  对于Zn负极,在应用高铁电池应用中有着一定的优势,因为锌电极作为
负极材料在碱性溶液中有着较成熟的理论和工艺积累,有许多可借鉴的技术。 

  2、铝 

  铝作为高铁电池的负极,会遇到两个问题: 

  一是铝在碱性溶液中的腐蚀问题:在强碱性溶液中,铝的溶解速度很快,同时产生大量的氢气,对高铁酸盐来说,穿过
隔膜的氢气会加速高铁酸盐的分解; 

  二是铝在阳极过程中表面产生沉积物会阻止电极的反应。 

  可以通过合金化和
电解液添加剂这两个途径来克服上述问题。 

  通过添加一些元素形成二元或多元铝合金,如添加Ga、Sn、In等金属可以改变铝表面沉积物的组成结构,提高铝的阳极电位,同时增强铝抗自腐蚀的能力。在
电解液中添加其它物质也可以改善电极反应产物的晶型,从而起到抑制腐蚀和提高阳极电位的作用。如添加In(OH)3可以有效减小腐蚀,而添加Ga2O3、Na2SnO3或柠檬酸钠等都可以对活化电极起到有效的作用。 

  3、铁 

  铁作为电池负极在碱性溶液中失去电子形成稳定的+2价和+3价氢氧化物: 

  Fe+nOH—→Fe(OH)n2-n+2e; 

  Fe(OH)n2-n—→Fe(OH)2+(n-2)OH-E°=-0.877V; 

  Fe(OH)2+OH—→Fe(OH)3+eEθ=-0.56V; 

  然后,2Fe(OH)3+Fe(OH)2—→Fe3O4+4H2O 

  在碱性溶液中,铁最初形成+2价产物,二价铁与
电解液形成Fe(OH)n2-n络合物,在继续放电时生成+3价铁,而且由+3价铁与+2价铁相互作用形成Fe3O4。 

  铁与高铁酸盐组成电池时,电池的开路电压为1.5V左右,随着高铁酸盐的类型而有少许变化。由铁电极的放电曲线可知,铁负极在放电时有两个放电平台,第一个放电平台对应的是Fe向Fe(OH)2的转化;第二个放电平台对应的是Fe(OH)2/Fe(OH)3反应,第一个放电平台到第二个放电平台电压会降低0.3V左右。实际上,第二个平台的放电容易受到很多因素的影响。如第二次放电产物和高铁酸盐的反应产物Fe(OH)3会与Fe(OH)2形成Fe3O4,影响了Fe(OH)2的放电。铁负极与高铁酸钾组成的单体电池在第一放电平台的理论容量应为285.3mAh/g。 

  4、镉 

  镉与高铁酸盐组成电池时,单体电池开路电压的理论值应在1.4V左右。镉与K2FeO4组成电池的理论容量为219mAh/g。 

  高铁电池
电解液: 

  1、水溶液体系 

  高铁电池的
正极材料为高铁酸盐,而高铁酸盐的可溶性比较差,即使在在中性及至弱碱性水溶液中也很不稳定。因此,以高铁酸盐为正极材料的化学电源的水溶液体系只能是浓的强碱水溶液。在碱性水溶液中,可作为电池负极的材料也很多,包括锌、铝、铁、镉和镁等。 

  2、非水体系 

  高铁酸盐在一些非水性有机介质如乙腈、碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、乙二醇二甲醚(DEM)和四氢呋喃(THF)中也非常稳定,而且几乎是不溶的。这使得高铁酸盐可以作为非水性
电解液电池的正极材料。目前非水电解液中使用的负极材料主要是锂。 

  锂铁电池 

  磷酸铁锂动力电池(以下简称锂铁电池)作为铁电池的一种,一直受到业界朋友的广泛关注(也有人说锂铁电池其实就是
锂离子电池的一种)。磷酸铁锂电池的优点在于,安全、价格便宜、环保。 

  首先,磷酸铁锂的安全性能是目前所有的材料中最好的。它和其他磷酸盐的安全性能也基本一样,用磷酸铁锂做电池,不用担心爆炸问题。其次,稳定性高,高温充电的容量稳定性好,储存性能好。这点是最大的优点,在所有知道的材料中也是最好的。此外,整个生产过程清洁无毒。所有原料都无毒。并且磷酸盐采用磷酸源和锂源以及铁源为材料,这些材料都十分便宜。铁电池研发现状 

  根据锂铁电池的众多优点,并且伴随着磷酸铁锂做电池技术的成熟,该技术正在被企业推向市场。国内目前已经有很多公司在做测试、研究。而高铁电池作为电池中的一种新兴技术,目前在国内还没有太多的研发,只有比亚迪一家在新车型F3DM上使用了高铁电池。但是,作为能量密度大、体积小、重量轻、寿命长、无污染的新型化学电池,将来一定会有更好的应用前景。技术变商品前景看好,虽然要想完全市场化仍存在一些现实问题,如政府的支持力度、消费者的认同、
充电设备的建设等,但是随着技术的成熟,锂铁电池将会有更好的发展。在国外,有很多生产厂家都在研究动力电池,而在国内,虽然目前只有比亚迪一家成功推出了“铁电池”概念,并应用在了其生产的F3DM车型上,但这毕竟是大胆地尝试了将技术转化为产品,这种商业化运作模式为其他致力于生产电动汽车及混合动力汽车的企业带来了很大的启示,也为电池制造企业指了条明路。相信,随着燃料电池技术在汽车上的应用的不断成熟,“铁电池”技术将会拥有更大的用武之地。
 
关于我们:中国化学与物理电源行业协会(China Industrial Association of Power Sources,缩写:CIAPS) 是由电池行业企(事)业单位自愿组成的全国性、行业性、非营利性的社会组织。协会成立于1989年12月,现有550多家会员单位,下设碱性蓄电池与新型化学电源分会、酸性蓄电池分会、锂电池分会、太阳能光伏分会、干电池工作委员会、电源配件分会、移动电源分会、储能应用分会、动力电池应用分会和电池隔膜分会等十个分支机构。
本会专业范围包括:铅酸蓄电池、镉镍蓄电池、氢镍蓄电池、锌锰碱锰电池、锂一次电池、锂离子电池、太阳电池、燃料电池、锌银电池、热电池、超级电容器、温差发电器及其他各种新型电池、电池系统解决方案,以及各类电池用原材料、零配件、生产设备、测试仪器和电池管理系统等。

关键词: 新型 电池 铁电池
[ 资讯搜索 ]  [ 加入收藏 ]  [ 告诉好友 ]  [ 打印本文 ]  [ 关闭窗口 ]

 

 
资讯浏览
 
网站首页